Monday, April 21, 2014

Engr. Aneel Kumar

TECHNICAL COMPLEXITIES AND RISKS OF GRID INTERCONNECTIONS

The fact that interconnections between power systems are increasingly common does not imply that they are as simple as connecting a few wires. Interconnections obviously entail the expense of constructing and operating transmission lines and substations, or in the case of HVDC, converter stations. Interconnections also entail other costs, technical complexities, and risks. For AC interconnections especially, a power system interconnection is a kind of marriage, because two systems become one in an important way when they operate in synchronism. To do this requires a high degree of technical compatibility and operational coordination, which grows in cost and complexity with the scale and inherent differences of the systems involved. To give just one example, when systems are interconnected, even if they are otherwise fully compatible, fault currents (the current that flows during a short circuit) generally increase, requiring the installation of higher capacity circuit breakers to maintain safety and reliability. To properly specify these and many other technical changes required by interconnection requires extensive planning studies, computer modeling, and exchange of data between the interconnected systems.

The difficulties of joint planning and operation of interconnected systems vary widely. As with marriages, from the institutional and administrative standpoint, coupled systems may become a single entity, or they may keep entirely separate accounts. Within the North American interconnections, for example, there are hundreds of electric utility companies that are entirely separate commercial entities. Customers receive power from, and pay bills to, the utility that serves their area, for example Consolidated Edison.

They may do so without even knowing of the existence of the Eastern interconnection. Yet all the utilities in the Eastern interconnection are in a technical marriage that dictates or constrains key aspects of their technology choices and operating procedures.

Within countries, there are typically common technical standards for all utilities, which reduce the complexity of interconnecting separate systems. In different countries, on the other hand, power systems may have evolved quite separately, with very different standards and technologies, which adds an extra layer of technical complexity to interconnections. Institutional and administrative features of power systems in different countries are also likely to differ in many ways, and these differences invariably affect the technical and operational dimensions of an interconnection. Issues ranging from power trading agreements to reliability standards, while expressed in technical terms, often must be resolved within the realm of policy and political economy. As one expert on international interconnections has remarked “many technical, organizational, commercial and political problems have had to be solved to get large networks linked by international interconnections to operate”.

The greatest benefits of interconnection are usually derived from synchronous AC operation, but this can also entail greater reliability risks. In any synchronous network, disturbances in one location are quickly felt in other locations. After interconnecting, a system that used to be isolated from disturbances in a neighboring system is now vulnerable to those disturbances. As major blackouts in North America and Europe in 2003 demonstrated, large-scale disturbances can propagate through interconnections and result in cascading outages, bringing down systems that had previously been functioning normally. In addition, long-distance interconnections with long transmission lines have potentially greater stability problems than is the case for shorter lines. Finally, many systems that have undergone electricity liberalization in recent years have experienced large increases in transmission capacity utilization, reducing reserve margins. Minimizing the likelihood that an interconnection will lead to such problems as voltage collapse, dynamic and transient instability, or cascading outages due to propagated disturbances requires careful planning and well-coordinated operation.

Engr. Aneel Kumar -

Subscribe to this Blog via Email :