Saturday, May 24, 2014

Engr. Aneel Kumar

INRUSH CURRENT IN TRANSFORMER

When a transformer is taken off-line, a certain amount of residual flux remains in the core due to the properties of the magnetic core material. The residual flux can be as much as 50 to 90% of the maximum operating flux, depending the type of core steel. When voltage is reapplied to the transformer, the flux introduced by this source voltage builds upon that already existing in the core. In order to maintain this level of flux in the core, which can be well into the saturation range of the core steel, the transformer can draw current well in excess of the transformer’s rated full-load current. Depending on the transformer design, the magnitude of this current inrush can be anywhere from 3.5 to 40 times the rated full-load current. The waveform of the inrush current is similar to a sine wave, but largely skewed to the positive or negative direction. This inrush current experiences a decay, partially due to losses that provide a dampening effect. However, the current can remain well above rated current for many cycles.

This inrush current can have an effect on the operation of relays and fuses located in the system near the transformer. Decent approximations of the inrush current require detailed information regarding the transformer design, which may be available from the manufacturer but is not typically available to the application engineer. Actual values for inrush current depend on where in the source voltage wave the switching operations occur, the moment of opening affecting the residual flux magnitude, and the moment of closing affecting the new flux.

Engr. Aneel Kumar -

Subscribe to this Blog via Email :