Sunday, April 20, 2014

Engr. Aneel Kumar

FOSSIL FUEL POWER PLANTS

Steam turbine power plants can use coal, oil, natural gas, or just about any combustible material as the fuel resource. However, each fuel type requires a unique set of accessory equipment to inject fuel into the boiler, control the burning process, vent and exhaust gases, capture unwanted byproducts, and so on.

Some fossil fuel power plants can switch fuels. For example, it is common for an oil plant to convert to natural gas when gas is less expensive than oil. Most of the time, it is not practical to convert a coal burning power plant to oil or gas unless it has been designed for conversion. The processes are usually different enough so that switching will not be cost effective.

Coal is burned in two different ways in coal fired plants. First, in traditional coal fired plants, the coal is placed on metal conveyor belts inside the boiler chamber. The coal is burned while on the belt as the belt slowly traverses the bottom of the boiler. Ash falls through the chain conveyor belt and is collected below where it is sometimes sold as a useful by-product for other industries.

In pulverized coal power plants, the coal is crushed into a fine powder and injected into the furnace where it is burned similar to a gas. Pulverized coal is mixed with air and ignited in the furnace. Combustion by-products include solid residue (ash) that is collected at the bottom of the furnace and gases that include fine ash, NO2, CO, and SO2, which are emitted into the atmosphere through the stack. Depending on local environmental regulations, scrubber and Baghouse equipment may be required and installed to collect most of these by-products before they reach the atmosphere.

Scrubbers are used to collect the undesirable gases to improve the quality of the stack output emissions. Baghouses are commonly used to help collect fly ash.

Some of the drawbacks that could be encountered with coal fired steam generating power plants are:

  • Environmental concerns from burning coal (i.e., acid rain).
  • Transportation issues regarding rail systems for coal delivery.
  • Length of transmission lines to remote power plant locations.
Figure 2-10 shows the layout of a typical steam power plant. Notice the steam line used to transfer super heated steam from the boiler to the turbine and then through the condenser where it is returned to a water state and recycled.

Notice the steam turbine connected to the generator. The turbine speed is controlled by the amount of steam applied in order to control frequency. When load picks up on the electrical system, the turbine shaft speed slows down and more steam is then placed on the turbine blades to maintain frequency. Notice how coal is delivered to the boiler and burned. Exhaust is vented through the stack. Scrubbers and bags remove the by-products before they enter the atmosphere. Water from a nearby reservoir is pumped to the condenser where it is used to convert steam back into water and recycled.

Figure 2-10. Steam power plant.
Figure 2-11 shows a coal fired steam turbine power plant. The ramp in front lifts the coal to the pulverizer where it is crushed before being injected into the boiler and burned. Plant operators must be careful to not allow the spontaneous combustion of coal while it is stored in the yard.

Figure 2-11. Coal power plant.

Engr. Aneel Kumar -

Subscribe to this Blog via Email :