Outage of one or more power system components due to the overload may result in overload of other elements in the system. If the overload is not alleviated in time, the process of power system cascading may start, leading to power system separation. When a power system separates, islands with an imbalance between generation and load are formed. One consequence of the imbalance is deviation of frequency from the nominal value. If the generators cannot handle the imbalance, load or generation shedding is necessary. A special protection system or out-of-step relaying can also start the separation.
A quick, simple, and reliable way to reestablish active power balance is to shed load by under-frequency relays. The load shedding is often designed as a multistep action, and the frequency settings and blocks of load to be shed are carefully selected to maximize the reliability and dependability of the action. There are a large variety of practices in designing load shedding schemes based on the characteristics of a particular system and the utility practices. While the system frequency is a final result of the power deficiency, the rate of change of frequency is an instantaneous indicator of power deficiency and can enable incipient recognition of the power imbalance. However, change of the machine speed is oscillatory by nature due to the interaction among generators. These oscillations depend on location of the sensors in the island and the response of the generators. The problems regarding the rate-of-change of frequency function are:
• Systems having small inertia may cause larger oscillations. Thus, enough time must be allowed for the relay to calculate the actual rate-of-change of frequency reliably. Measurements at load buses close to the electrical center of the system are less susceptible to oscillations (smaller peak-to- peak values) and can be used in practical applications. Smaller system inertia causes a higher frequency of oscillations, which enables faster calculation of the actual rate-of-change of frequency. However, it causes faster rate-of-change of frequency, and, consequently, a larger frequency drop.
• Even if rate-of-change of frequency relays measure the average value throughout the network, it is difficult to set them properly unless typical system boundaries and imbalance can be predicted. If this is the case (e.g., industrial and urban systems), the rate of change of frequency relays may improve a load shedding scheme (scheme can be more selective and/or faster).
A quick, simple, and reliable way to reestablish active power balance is to shed load by under-frequency relays. The load shedding is often designed as a multistep action, and the frequency settings and blocks of load to be shed are carefully selected to maximize the reliability and dependability of the action. There are a large variety of practices in designing load shedding schemes based on the characteristics of a particular system and the utility practices. While the system frequency is a final result of the power deficiency, the rate of change of frequency is an instantaneous indicator of power deficiency and can enable incipient recognition of the power imbalance. However, change of the machine speed is oscillatory by nature due to the interaction among generators. These oscillations depend on location of the sensors in the island and the response of the generators. The problems regarding the rate-of-change of frequency function are:
• Systems having small inertia may cause larger oscillations. Thus, enough time must be allowed for the relay to calculate the actual rate-of-change of frequency reliably. Measurements at load buses close to the electrical center of the system are less susceptible to oscillations (smaller peak-to- peak values) and can be used in practical applications. Smaller system inertia causes a higher frequency of oscillations, which enables faster calculation of the actual rate-of-change of frequency. However, it causes faster rate-of-change of frequency, and, consequently, a larger frequency drop.
• Even if rate-of-change of frequency relays measure the average value throughout the network, it is difficult to set them properly unless typical system boundaries and imbalance can be predicted. If this is the case (e.g., industrial and urban systems), the rate of change of frequency relays may improve a load shedding scheme (scheme can be more selective and/or faster).