Thursday, January 09, 2014

Engr. Aneel Kumar

ELECTRIC CURRENT

The density of the atoms in copper wire is such that the valence orbits of the individual atoms overlap, causing the electrons to move easily from one atom to the next. Free electrons can drift from one orbit to another in a random direction. When a potential difference is applied, the direction of their movement is controlled. The strength of the potential difference applied at each end of the wire determines how many electrons change from a random motion to a more directional path through the wire. The movement or flow of these electrons is called electron current flow or just current.

To produce current, the electrons must be moved by a potential difference. The symbol for current is (I). The basic measurement for current is the ampere (A). One ampere of current is defined as the movement of one coulomb of charge past any given point of a conductor during one second of time.

If a copper wire is placed between two charged objects that have a potential difference, all of the negatively-charged free electrons will feel a force pushing them from the negative charge to the positive charge. This force opposite to the conventional direction of the electrostatic lines of force is shown in Figure 9.


The direction of electron flow, shown in Figure 10, is from the negative (-) side of the battery, through the wire, and back to the positive (+) side of the battery. The direction of electron flow is from a point of negative potential to a point of positive potential. The solid arrow shown in

Figure 10 indicates the direction of electron flow. As electrons vacate their atoms during electron current flow, positively charged atoms (holes) result. The flow of electrons in one direction causes a flow of positive charges. The direction of the positive charges is in the opposite direction of the electron flow. This flow of positive charges is known as conventional current and is shown in Figure 10 as a dashed arrow. All of the electrical effects of electron flow from negative to positive, or from a higher potential to a lower potential, are the same as those that would be created by a flow of positive charges in the opposite direction. Therefore, it is important to realize that both conventions are in use and that they are essentially equivalent; that is, all effects predicted are the same. In this text, we will be using electron flow in our discussions.


Generally, electric current flow can be classified as one of two general types: Direct Current (DC) or Alternating Current (AC). A direct current flows continuously in the same direction.

An alternating current periodically reverses direction. We will be studying DC and AC current= in more detail later in this text. An example of DC current is that current obtained from a battery. An example of AC current is common household current.

Engr. Aneel Kumar -

Subscribe to this Blog via Email :