Skip to main content

SEALED LEAD ACID BATTERY

The lead-acid battery is a commonly used chemistry. The flooded version is found in automobiles and large UPS battery banks. Most smaller, portable systems use the sealed version, also referred to as gel-cell or SLA.

The lead-acid chemistry is commonly used when high power is required, weight is not critical, and cost must be kept low. The typical current range of a medium-sized SLA device is 2 Ah to 50 Ah. Because of its minimal maintenance requirements and predictable storage characteristics, the SLA has found wide acceptance in the UPS industry, especially for point-of-application systems.

The SLA is not subject to memory. No harm is done by leaving the battery on float charge for a prolonged time. On the negative side, the SLA does not lend itself well to fast charging. Typical charge times are 8 to 16 hours. The SLA must always be stored in a charged state because a discharged SLA will sulphate. If left discharged, a recharge may be difficult or even impossible.

Unlike the common NiCd, the SLA prefers a shallow discharge. A full discharge reduces the number of times the battery can be recharged, similar to a mechanical device that wears down when placed under stress. In fact, each discharge-charge cycle reduces (slightly) the storage capacity of the battery. This wear down characteristic also applies to other chemistries, including the NiMH.
The charge algorithm of the SLA differs from that of other batteries in that a voltage-limit rather than current-limit is used. Typically, a multistage charger applies three charge stages consisting of a constant- current charge, topping-charge, and float-charge. (Reffer Figure) During the constant-current stage, the battery charges to 70% in about 5 hours; the remaining 30% is completed by the topping charge. The slow topping-charge, lasting another 5 hours, is essential for the performance of the battery. If not provided, the SLA eventually loses the ability to accept a full charge, and the storage capacity of the battery is reduced. The third stage is the float-charge that compensates for self-discharge after the battery has been fully charged.
Figure: The charge states of an SLA battery.
During the constant-current charge, the SLA battery is charged at a high current, limited by the charger itself. After the voltage limit is reached, the topping charge begins and the current starts to gradually decrease. Full-charge is reached when the current drops to a preset level or reaches a low-end plateau.

The proper setting of the cell voltage limit is critical and is related to the conditions under which the battery is charged. A typical voltage limit range is from 2.30 to 2.45 V. If a slow charge is acceptable, or if the room temperature can exceed 30°C (86°F), the recommended voltage limit is 2.35 V/cell. If a faster charge is required and the room temperature remains below 30°C, 2.40 or 2.45 V/cell can be used. Table compares the advantages and disadvantages of the different voltage settings.

Table: Recommended Charge Voltage Limit for the SLA Battery

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...