Skip to main content

CLUMP MECHANISM

The vacuum breakdown mechanism based on this theory makes following assumption:

(i) A loosely bound particle known as clump exists on one of the electrode surfaces.

(ii) When a high voltage is applied between the two electrodes, this clump gets charged and subsequently gets detached from the mother electrode and is attracted by the other electrode.

(iii) The breakdown occurs due to a discharge in the vapor or gas released by the impact to the particle at the opposite electrode.

It has been observed that for a certain vacuum gap if frequent recurrent electric breakdowns are carried out, the withstand voltage of the gap increases and after certain number of breakdown, it reaches an optimum maximum value. This is known as conditioning of electrodes and is of paramount importance from practical reasons. In this electrode conditioning, the micro-emission sites are supposed to have been destroyed.

Various methods for conditioning the electrodes have been suggested. Some of these are

(i) To treat the electrodes by means of hydrogen glow discharge. This method gives more consistent results.

(ii) Allowing the pre-breakdown currents in the gap to flow for some time or to heat the electrodes in vacuum to high temperature.

(iii) Treating the electrodes with repeated spark breakdown. This method is however quite time consuming.

The area of electrodes for breakdown of gases, liquids, solids or vacuum plays an important role. It has been observed that if the area of electrodes is increased for the same gap distance in uniform field, the breakdown voltages are reduced.

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...